
33 Examples of Termination*

N achum Dershowitz

Department of Computer Science, University of Illinois, Urbana, 1L 61801, USA

Abstract. A graded sequence of examples-presented in a uniform framework-spotlights stages in
the development of methods for proving termination of rewrite systems.

Let T be the set of all terms over some vocabulary. A rewrite system over T is a (finite or infinite) set of
rules, each of the form I --+ r, where I and r are terms containing variables ranging over T. A rule 1--+ r applies
to a term t in T if a sub term s of t matches the left-hand side I with some substitution () of terms in T for
variables appearing in l. The rule is applied by replacing the redex s in t with the corresponding right-hand
side r(} of the rule, to which the same substitution () of terms for variables has been applied. We write t --+ u

to indicate that the term t in T rewrites in this way to the term u in T by a single application of some
rule. Note that more than one rule can apply to t and rules can apply at more than one sub term s. Rewrite
systems have long been used as decision procedures for validity in equational theories, that is, for truth of
an equation in all models of the theory. They are also used as a specification and programming language.
See [Dershowitz and Jouannaud, 1990; Klop, 1992; Plaisted, 1993] for recent surveys of term-rewriting and
some of its applications.

A rewrite system is terminating if there are no infinite derivations tl --+t2 --+t3···. Termination is unde­
cidable. A proof of termination must take into consideration the many different possible rewrite sequences
permitted by the nondeterministic choice of rules and subterms. We present a series of examples culled
from the literature to illustrate the progression of techniques used to prove termination of vanilla-flavored
rewriting. 1 We describe these techniques in a manner designed to highlight similarities and follow a logical
sequence that is not perfectly chronological. Not covered here are methods based on transformations of the
given system, including those for more intricate forms of rewriting (notably, when permutation of operands
of associative-commutative operators is permitted prior to rewriting). A survey of termination methods for
rewriting may be found in [Dershowitz, 1987].

Example 1 (Loops). T. Evans [1951] gave the first rewrite-based decision procedure, using these dozen rules
to compute normal forms:

x\x --+ e x . (x\y) --+ y

x/x --+ e (y/x)·x --+ y
e·x --+ x x\(x . y) --+ y
x·e --+ x (y·x)\x --+ y

e\x --+ x x/(y\x) --+ y
x/e --+ x (x/y)\x --+ y.

This system obviously terminates, since application of any rule to any redex in t decreases the size (number
of symbols) It I of t. To quote Evans, "[T]he effect of an elementary reduction is to reduce the length of a
word by at least I." D

Example 2 (Fragment of Group Theory). Similarly,

1· x --+ x x·1 --+ x
x ·x --+ 1 x·x --+ 1

1- --+ 1 (x-)- --+ x
x-·(x·y) --+ y x·(x-·y) --+ y

* Research supported in part by the U. S. National Science Foundation under Grants CCR-90-07195 and CCR-90-
2427l.

1 I apologize for not providing the provenance of many of the examples.

terminates, since

s-+t::::} lsi> It I .

Note that it is not enough for every rule's left-hand side to be longer than its right-hand side. If the right­
hand side has more occurrences of some variable than does the left, as in a rule like (x -) . y -+ y . y, then an
application like a- . (a . a) -+(a . a) . (a . a) causes an increase in size.

The size (length) ordering has been particularly popular in work on semigroups, for which III > 11"1, for
each rule 1-+ 1", suffices to ensure termination. D

Example 3. Clearly, measures other than size can be used. For example,

f(f(x)) -+ g(f(x))

terminates, since the number of f's decreases. D

Example 4. The lexicographic combination of well-founded orderings is well-founded, so one can show ter­
mination of

f(f(x)) -+ g(f(x))
g(g(x)) -+ f(x)

by considering the pair (size, number of fs). D

Example 5. In general, one can use any measure [.] : T -+ W such that

s-+t::::} [s] ~ [t] ,

where ~ is a well-founded ordering on W. For example,

f(J(x)) -+ f(g(J(x)))

terminates, since the number of adjacent f's decreases, regardless of what is substituted for x, or what
context surrounds f(J(x)). D

Example 6. To show termination of

f(g(x)) -+ g(g(J(x)))
f(g(x)) -+ g(g(g(x))) ,

we can use the suggestion of S. Gorn [1973] and consider the tuple of heights (distance from con­
stants in the tree representation of the term) of the fs. Moving an f right decreases the height
of that f while increasing the height of fs to its left, so we compare the heights lexicographically:
(number of fs, height of rightmost f, ... , height of leftmost I). D

Example 7 (Dutch National Flag). Consider the rules:

w(1"(x)) -+ 1"(w(x))
b(1"(x)) -+ 1"(b(x))
b(w(x)) -+ w(b(x)).

The term can be viewed as an integer in base 3, with "blue" b = 2, "white" w = 1, and "red" 1" and any
other symbol appearing in a term as O. D

Example 8 (Differentiation). One of the problems on a qualifying exam given by R. Floyd at Carnegie-Mellon
University in 1967 was to prove termination of

Dt --+

D(constant) --+

D(x + y) --+

D(x x y) --+

D(x - y) --+

He had in mind a proof using ordinals, such as

[Dx] = w[x]

[t] = 1
[constant] = 1

where the sums and products are commutative.

1
0
Dx+Dy
(yxDx)+(xxDy)
Dx - Dy.

[x + y] = [x] + [y]
[x - y] = [x] + [y]
[x x y] = [x] + [y] ,

D

Example 9 (Semigroups). Z. Manna (who took Floyd's exam) and S. Ness (Manna's student) [1970] suggested
a general method based on interpretations [-]: assign an n-ary function [J] : wn --+ W, for some well-founded
set W, to each n-ary symbol /, and let [.] interpret terms accordingly. With the added replacement property
(true of the above ordinal notations),

x> y :::} [J](. .. x ...) > [J](... y ...) ,

for each symbol /, one need only show
Vi [I] > [r] ,

where i are the variables appearing in I and r. For

(x·y)·z --+ x·(y·z),

take
[x . y] = 2 [x] + [y] [constant] = 2 .

It can be shown that termination of a system for one vocabulary (as here for . and constants) implies
termination over any larger vocabulary (which adds symbols not appearing in the system's rules). D

Example 10. Another student taking that test, R. Iturriaga, went on to produce a dissertation on symbolic
computation [Iturriaga, 1967] in which a class of systems, including differentiation, were proved terminating.
The idea was to use exponential interpretations; the following is somewhat simplified:

[x + y] = [x] + [y]
[x - y] = [x] + [y]
[x x y] = [x] + [y]

[Dx] = 3[x]

[t] = 3
[constant] = 3

D

Example 11. D. Lankford [1979] championed the use of polynomial interpretations, which suffice even for an
expanded differentiation program:

Dt --+ 1
D(constant) --+ 0

D(x + y) --+ Dx+Dy
D(x x y) --+ (yxDx)+(xxDy)
D(x - y) --+ Dx-Dy

D(-x) --+ -Dx
D(x/y) --+ (Dx/y) - (x x Dy/y2)
D(ln x) --+ Dx/x
D(xY) --+ (y X xy- 1 X Dx) + (xy x (lnx) x Dy) .

Let
[x + y] = [x] + [y]
[x - y] = [x] + [y]

[xY] = [x] + [y]
[-x] = [x] + 1

[constant] = 2

[x x y] = [x] + [y]
[x/y] = [x] + [y]
[Dx] = [xf
[In x] = [x] + 1

[t] = 2 .

Example 12 (Disjunctive Normal Form). For

exponentials are, however, required:

"X ---+ x
-,(xVy) ---+ (-,x) A (-,y)
-,(xAY) ---+ (-,x) V (-,y)

xA(YVz) ---+ (xAy)V(xAz)
(yVz)Ax ---+ (xAy)V(xAz),

[x V y] = [x] + [y] + 1
[x A y] = [x][y]

[-,x] = 2[x]

[constant] = 2 .

D

Primitive recursive interpretations cannot prove termination of all terminating systems, so resort to
ordinals or their equivalents is inevitable. D

Example 13. Sometimes, pairs of interpretations come in handy: For

we can use ([term], [term]'), where

x x (y + z) ---+ (x x y) + (x x z)
(y+z)xx ---+ (xxy)+(xxz)
(xxy)xz ---+ xx(yxz)
(x+y)+z ---+ x+(y+z),

[x x y] = [x][y] [x X y]' = 2[x]' + [y]'
[x + y]' = 2[x]' + [y]'

[constant]' = 2 .
[x + y] = [x] + [y] + 1

[constant] = 2

The first two rules decrease the first interpretation; the last two decrease the second, without changing the
first. So, a lexicographic comparison of pairs is in order. D

Example 14. Other times, it pays to map terms to pairs [Zantema, 1991]. Looking again at

f(J(x)) ---+ f(g(J(x))) ,

we can let [.] : T ---+ N x N as follows: [J](x, y) = (x + y, x), [g](x, y) = (y, x), and [constants] = (1,1).
Since the interpretation of the term being rewritten decreases in its second component, while the first remains
intact, the whole term's value can also be shown decreasing. D

Example 15. Another way to show termination of

f(g(x)) ---+ g(g(J(x)))
f(g(x)) ---+ g(g(g(x)))

is to look at the pair (top, argument), where the top (leftmost) symbols are compared in a precedence
(ordering of function symbols), with f > g. Both rules decrease the top symbol, and the second component
ensures that the decrease carries over recursively to the whole term. For such recursive comparisons to yield
a well-founded ordering, the second component must be bounded. That is, one must show that the recursive
component (the suffix of the right-hand side) is smaller than the whole left-hand side. For this to in fact be
the case, we need to include the proper sub term relation in the ordering, that is, we must have f(x), g(x) ~ x.
This is the simplest example of a "path ordering" [Plaisted, 1978a; Dershowitz, 1982].

Example 16. Consider, again,

(x·y)·z --+ x·(y·z)

and the triple (size, first multiplicand, second multiplicand), where the multiplicands are compared
recursively in this lexicographic ordering (for a constant term, minimal elements can be used instead). As
before, we need to check that the left-hand side is strictly greater than all the sub terms of the right-hand
~&. D

Example 17 (Group Theory). The first decision procedure obtained by D. Knuth and P. Bendix's [1970] com­
pletion program was the following system:

1· x --+ x x·1 --+ x
x ·x --+ 1 x·x --+ 1

1- --+ 1 x --+ x
y-·(y·z) --+ z y·(y-·z) --+ z
(x·y)·z --+ x·(y·z) (x· y)- --+ y - ·x

To prove its termination, Knuth devised a recursive ordering that combined the notion of precedence with
a simple linear weight: (weight, top, first argument, ... , last argument). (The arguments can be listed
in any other permutation just as well.) The weight is the sum of the weights of all the symbols, which are
non-negative integers. Symbols are compared in the precedence order; arguments are compared recursively.
Constants must have positive weight and a unary symbol may have zero weight only if it is maximal in the
precedence. This ensures that terms are greater than their subterms, and, hence, that the arguments are
bounded. For the group example, give constants weight 1, other operators weight 0, and let inverse have
the greatest precedence. Weight is needed for the simple rules; the precedence is what makes the rule for
distributing inverse work; the lexicographic comparison of sub terms is all that is needed for associativity. D

Example 18 (Distributivity). For

x x (y + z) --+ (x x y) + (x x z) ,

R. Lipton and L. Snyder [1977] suggested the pair (natural interpretation, maximum - size). The "nat­
ural" interpretation,

[x x y] = [x][y]
[x + y] = [x] + [y] [constant] = 1 ,

is unchanged by rewriting, hence imposes a maximum size (and height) on equal terms, which is then used
in the second component to show a decrease. D

Example 19. As Knuth and Bendix pointed out, their method needs to be extended to handle "duplicating"
systems (one that has more occurrences of a variable on the right than on the left), such as:

x x (y + z) --+ (x x y) + (x x z)
(y+z)xx --+ (xxy)+(xxz)
(xxy)xz --+ xx(yxz)
(x+y)+z --+ x+(y+z).

D. Lankford [1979] suggested extending the method of Knuth and Bendix by using integer poly­
nomial weights (with positive coefficients to guarantee that terms are greater than sub terms):
([term], top, left argument, right argument). A natural interpretation, with precedence x > + does
the trick. D

Example 20. To prove termination of

"X ---+ x
,(x V y) ---+ (",x) II (",y)
,(x II y) ---+ (",x) V (",y) ,

use the multiset {number of and's and or's in xl'x in term}. Finite multisets are compared using the well­
founded multiset ordering [Dershowitz and Manna, 1979] in which replacing an element with any number
of smaller elements decreases the multiset. Since applying a rule does not change the total number of and's
and or's, the contribution of superterms of the redex is unchanged thereby. D

Example 21 (Factorial). Oftentimes, one would like to consider the top symbol before the interpretation.
That way, one can ignore less significant functions. For

p(s(x)) ---+ x
fact(O) ---+ s(O)

fact(s(x)) ---+ s(x) x fact(p(s(x)))
o x y ---+ 0

s(x) x y ---+ (xxy)+y
x+O ---+ x

x + s(y) ---+ s(x+y) ,

we would use a precedence fact> x > + > s > O. Then we compare two calls to fact by their natural
interpretation:

[fact(x)] = [x]!
[s(x)] = [x] + 1
[P(x)] = [x] - 1

[x x y] = [x][y]
[x + y] = [x] + [y]

[0] = 0 .

To compare terms, we consider (top, [term]), and also let terms be greater than subterms. Instead of the
replacement property, one need only ensure that rewriting a sub term does not increase the whole term:

s~tands---+t ::::} g(... ,s, ...)~g(... ,t, ...),

for all symbols g, which is not a problem since the interpretation is "value-preserving."
It is enough to show that superterms (as opposed to the redex) do not increase (rather than actually

decrease), since this implies that the multiset of pairs for all sub terms shows a strict decrease, on account of
the fact that terms are taken to be larger than sub terms [Dershowitz, 1982]. D

Example 22. Another approach, based on multisets, for proving termination of differentiation is D. Plaisted's
[1978a] simple path ordering. Terms are mapped into multisets of sequences of function symbols:

[t] = {paths in t} ,

where a path is a sequence of function symbols, starting with the root symbol, and taking sub terms until a
constant is reached. Sequences are compared as in Example 15, with the differentiation operator maximal in
the precedence. D

Example 23. Nested multiset structures can also be used to prove termination of the differentiation example
[Dershowitz and Manna, 1979]:

[Dx] = {[x]}
[-x] = [x] U {0}
[lnx] = [x] U {0}
[x/y] = [x] U [y]
[xY] = [x] U [y]

[x + y] = [x] U [y]
[x - y] = [x] U [y]
[x x y] = [x] U [y]

[constant] = {0}
[t]={0}.

This is really just an encoding of Floyd's ordinal-based solution. D

Example 24. Consider, once again,

(x·y)·z --+ x·(y·z).

All we really want to consider is the size of the first multiplicand. There could, however, be a product in z
with a multiplicand larger than X· y, so one needs to add another factor: (size, size of first multiplicand),
which is simpler than a Knuth-Bendix ordering. Since rewriting does not affect the size of superterms, the
whole term does not increase.

Better yet, one can use (size of first multiplicand), and say that s ~ t if t is a proper sub term of s or
if they're both products, but s's first multiplicand is longer. The ordering is, thus, the transitive closure of
the proper sub term relation and the ordering based on the size of the first multiplicand. D

Example 25. For the factorial system, one can imitate a structural-induction proof of termination of the
corresponding recursive definitions using (top, [argument]), where the precedence is as before, fact> x >
+ > s > 0, simplifying the interpretation to

[fact(x)] = 0
[s(x)] = [x] + 1
[P(x)] = [x] - 1

[x x y] = [x][y]
[x + y] = [x] + [y]

[0] = 0 ,

and taking the first argument of factorial and times, and the second for plus. Again, this is combined with
the sub term relation. The value-preserving nature of the interpretation guarantees that superterms do not
mcrease. D

Example 26. The disjunctive normal form example served as motivation for the development of the recursive
path ordering in [Dershowitz, 1982], in parallel with related ideas in [Plaisted, 1978b]:

"X ---+ x
-,(xVy) --+ (-,x) A (-,y)
-,(xAY) --+ (-,x) V (-,y)

xA(YVz) --+ (xAy)V(xAz)
(yVz)Ax --+ (xAy)V(xAz).

Intuitively, the precedence should be -, > A > V, and terms should be greater than subterms. Adding the
sub terms as a second component: (top, {arguments}), we need to ascertain that the left-hand sides are
greater in this ordering than all sub terms of the corresponding right-hand sides. We use multisets in this
path ordering, so that (y V z) A x ~ (x A y). D

Example 27. As with previous methods, sometimes two orderings are better than one. For example, the first
rule of

h(J(x),y)
g(x, y)

--+ f(g(x, y))
--+ h(x, y)

suggests the precedence h ~ g > f; the second rule, on the other hand, requires g > h. So we prove
termination with (term, number of g's), using a multiset path ordering based on h ~ g > f for the
first component (under which two terms are equivalent when symbols are replaced with equivalents and/or
arguments are permuted). D

Example 28 (Conditional Normalization). To prove termination of

if(if(x, y, z), ti, v) --+ if(x, if(y, ti, v), if(z, ti, v)) ,

one can treat the first argument of if as the top symbol in a recursive path ordering [Dershowitz, 1982]:
(first argument, {other arguments}). Rather than an ordinary precedence, one compares first arguments
recursively. D

Example 29 (Ackermann's Function). S. Kamin and J .-J. Levy [1980] suggested a lexicographic version of
the recursive path ordering, which is like Knuth-Bendix, but with all terms having the same weight:
(top, first argument, ... ,last argument), and terms greater than subterms. This works beautifully with
examples like:

ack(O,y) ~ succ(y)
ack(succ(x), 0) ~ ack(x, succ(O))

ack(succ(x), succ(y)) ~ ack(x, ack(succ(x), y)) ,
where the precedence ack > succ is used for the first rule, and the lexicographic aspect for the others. To
establish that s ~ f(t l , ... , tn) in this ordering, one must also check (recursively) that s ~ t l , ... , tn, i.e.
that ack(succ(x), succ(y)) ~ ack(succ(x), y). D

Example 30 (Combinator C). With this lexicographic path ordering, the following can be shown to terminate
with no precedence:

(((C· x)· y) . z)· u ~ (x· z)· (((x· y) . z) . u) .

Example 31. The lexicographic path ordering cannot directly handle the following system:

(x·y)·z ~ x·(y·z)
(x+y)·z ~ (x·z)+(y·z)

z . (x + f(y)) ~ g(z, y) . (x + a) .

D

But termination can be proved using a semantic path ordering [Kamin and Levy, 1980] with any term of
the form z . (x + f(y)) greater than any other product, any product greater than any other term, and term
greater than its subterms, and products treated lexicographically (left-to-right). Note that no rule application
changes the value of the redex. D

Example 32 (Insertion Sort).

sort(nil) ~ nil
sort(cons(x, y)) ~ insert(x, sort(y))

insert(x, nil) ~ cons(x, nil)
insert(x, cons(v, w)) ~ choose(x, cons(v, w), x, v)

choose(x, cons(v, w), y, 0) ~ cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) ~ cons(v, insert(x, w))

choose(x, cons(v, w), s(y), s(z)) ~ choose(x, cons(v, w), y, z) .

Termination can be shown using sub term and the quadruple (top, argument, top, argument) to show that
the left side is greater than the right and its subterms. The first precedence is sort> insert ~ choose> cons;
the second, insert> choose. For the second component, we take the first argument of sort, second argument
of choose and insert, and any constant for the others; for the last component, we take the third argument
of choose. For details of this general path ordering, see [Dershowitz and Hoot, to appear]. D

Example 33 (Battle of Hydra and Hercules). The following system, is terminating, but not provably so in
Peano Arithmetic:

h(z, e(x))
d(z, g(O, 0))
d(z, g(x, y))

d(c(z),g(g(x,y),O))
g(e(x), e(y))

~ h(c(z), d(z, x))
~ e(O)
~ g(e(x), d(z, y))
~ g(d(c(z), g(x, y)), d(z, g(x, y)))
~ e(g(x, y)) .

Use a general path ordering, with semantic component

[g(x, y)] = w[x] + [y]
[d(z, x)] = pred[z] ([x])

[c(x)] = [x] + 1

[h(z, x)] = [z] + [x]
[e(x)] = [x]

[0] = = 1 ,

and compare ([term], top, second argument of d and g), with precedence d> 9 > e. D

References

[Dershowitz and Hoot, to appear] N achum Dershowitz and Charles Hoot. Natural termination. Theoretical Com­
puter Science, to appear.

[Dershowitz and Jouannaud, 1990] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B: Formal Methods and Semantics, chapter 6,
pages 243-320. North-Holland, Amsterdam, 1990.

[Dershowitz and Manna, 1979] N achum Dershowitz and Zohar Manna. Proving termination with multiset orderings.
Communications of the ACM, 22(8):465-476, August 1979.

[Dershowitz, 1982] N achum Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science,
17(3):279-301, March 1982.

[Dershowitz, 1987] N achum Dershowitz. Termination of rewriting. 1. Symbolic Computation, 3(1&2):69-115, Febru­
ary / April 1987. Corrigendum: 4, 3 (December 1987), 409-410; reprinted in Rewriting Techniques and Applications,
J.-P. Jouannaud, ed., pp. 69-115, Academic Press, 1987.

[Evans, 1951] Trevor Evans. On multiplicative systems defined by generators and relations, 1. Proceedings of the
Cambridge Philosophical Society, 47:637-649, 1951.

[Gorn, 1973] Saul Gorn. On the conclusive validation of symbol manipulation processes (how do you know it has to
work?). 1. of the Franklin Institute, 296(6):499-518, December 1973.

[Iturriaga, 1967] R. Iturriaga. Contributions to mechanical mathematics. Ph.D. Thesis, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, PA, 1967.

[Kamin and Levy, 1980] Sam Kamin and Jean-Jacques Levy. Two generalizations of the recursive path ordering.
Unpublished note, Department of Computer Science, University of Illinois, Urbana, IL, February 1980.

[Klop, 1992] Jan Willem Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum,
editors, Handbook of Logic in Computer Science, volume 2, chapter 1, pages 1-117. Oxford University Press, Oxford,
1992.

[Knuth and Bendix, 1970] Donald E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263-297. Pergamon Press, Oxford, U. K.,
1970. Reprinted in Automation of Reasoning 2, Springer-Verlag, Berlin, pp. 342-376 (1983).

[Lankford, 1979] Dallas S. Lankford. On proving term rewriting systems are Noetherian. Memo MTP-3, Mathemat­
ics Department, Louisiana Tech. University, Ruston, LA, May 1979. Revised October 1979.

[Lipton and Snyder, 1977] R. Lipton and 1. Snyder. On the halting of tree replacement systems. In Proceedings of
the Conference on Theoretical Computer Science, pages 43-46, Waterloo, Canada, August 1977.

[Manna and Ness, 1970] Zohar Manna and Steven Ness. On the termination of Markov algorithms. In Proceedings
of the Third Hawaii International Conference on System Science, pages 789-792, Honolulu, HI, January 1970.

[Plaisted, 1978a] David A. Plaisted. Well-founded orderings for proving termination of systems of rewrite rules.
Report R-78-932, Department of Computer Science, University of Illinois, Urbana, IL, July 1978.

[Plaisted, 1978b] David A. Plaisted. A recursively defined ordering for proving termination ofterm rewriting systems.
Report R-78-943, Department of Computer Science, University of Illinois, Urbana, IL, September 1978.

[Plaisted, 1993] David A. Plaisted. Term rewriting systems. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson,
editors, Handbook of Logic in Artificial Intelligence and Logic Programming, volume 4, chapter 2. Oxford University
Press, Oxford, 1993. To appear.

[Zantema, 1991] Hans Zantema. Classifying termination of term rewriting. Technical Report RUU-CS-91-42, Utrecht
University, The Netherlands, November 1991.

This article was processed using the I;\\TEX macro package with LLNCS style

