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Abstract

We extend the notion of universality of a function, due to Turing,
to arbitrary (countable) effective domains, taking care to disallow any
cheating on the part of the representations used. Then, we can be certain
that effective universal functions cannot simulate non-effective functions.
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1 Introduction

Alan Turing, in his groundbreaking paper, read in 1936, on the undecidability
of the Halting Problem and the Entscheidungsproblem [1], also invented the
notion of a universal machine. He explained the idea as follows:

The universal computing machine. It is possible to invent a
single machine which can be used to compute any computable se-
quence. If this machine I is supplied with a tape on the beginning
of which is written the [standard description] of some computing
machine M , then I will compute the same sequence as M . [1, p.
241]

There are two domains that are standard in discussions of computability:
(1) finite strings over finite alphabets—for which the Turing-computable partial
functions are the effective ones, and (2) the natural numbers—for which the
effective functions are identified with the partial recursive ones. Davis [2] and
Rogers [3] have proposed general definitions of universality for Turing machines
and for partial recursive functions, respectively.

For other (countable) domains, we will adopt the analogous notion of effec-
tiveness of a model of computation that was developed in [4]. Armed with the
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appropriate concept of generic effectiveness (Section 3), we extend the notion
of universality to arbitrary sets of functions over arbitrary domains (Section 5),
while addressing oft-ignored questions of “honesty” of representations of do-
mains (Section 4), pairings of elements (Section 6), and encodings of programs
(Section 2). Our main result (Theorem 5) assures us that—under fairly weak
conditions—representations cannot boost computational power, so an effective
universal function cannot encompass non-effective functions.

2 Function Encodings

In the simplest case, a universal function simply “carries on its shoulders” a
whole set of functions. The functions we speak of may be partial (unless stated
otherwise). In particular, a universal function is meant to simulate both total
and partial functions. So universal functions are partial by their very nature,
and may be undefined at some points.

Let Φ be some (usually, but not necessarily, countably infinite) set of unary
functions over a domain D. Given a binary function ψ over D, let Ψ = {ψa: a ∈
D} be the set of all specializations (cross-sections) ψa = λy. ψ(a, y) of ψ in its
first parameter. We say that ψ is universal for Φ if Ψ ⊇ Φ, where ⊇ is the
superset relation. This is the same as requiring there to be an encoding # :
Φ→ D such that ϕ = ψ#ϕ for all ϕ ∈ Φ. Equality of the two partial functions,
the original one ϕ and the simulation ψ#ϕ, means that ϕ(y) = ψ(#ϕ, y) for all
y ∈ D, where equality (here, as well as later) is “Kleene’s”, so the two sides
must also agree with regard to the values at which either is undefined, in which
case both must be undefined.

We are placing no demands on the encoding (#), only that there be some
parameter value (a = #ϕ) for which the universal function (ψ) exhibits the
identical argument-value relation as that of the given function (ϕ). The funda-
mental idea of universality is that one function can by itself cover a collection
of functions, in an extensional sense, but not that it necessary uses the same,
or similar, means as the given programs.

If one wants to incorporate functions of greater arity than 1, then one re-
quires a family of universal functions, one for each arity, which we may imag-
ine as one and the same varyadic function. In that case, we demand that
ϕ(y1, . . . , y`) = ψ(#ϕ, y1, . . . , y`), for ϕ of any arity `, and values y1, . . . , y`.

In practice, of course, we are interested in effective universal functions, func-
tions that can be expressed as programs. Then, a single universal function ψ
provides an effective means of computing any and all computable functions ϕ,
just by varying ψ’s first parameter. We discuss what it means to be effective in
the next section.

In particular, nothing in our definition explicitly rules out a perverse, non-
computable permutation of a standard enumeration of programs, like assigning
even codes to total (universally halting) ϕ and odd codes to strictly partial
ones. Such an encoding, however, would preclude a universal function ψ being
effective, because, were it to be, then λi. ψ2i would be an effective enumerator of
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programs for all the total recursive functions, an impossibility. If the universal
function is itself effective, then no encoding can endow it with the ability to
simulate an uncomputable function. This is because the encoding #ϕ is simply
a constant; thus, it can only supply finitely much additional information to ψ.

In point of fact, normally one is provided with a set of programs (standard
descriptions of Turing machines, say) in some formalism (that is, programming
language), which specifies the computed functions Φ, albeit with infinite dupli-
cation (there are always infinitely many programs with the same input-output
behavior). There is no harm in this, as then, from our point of view, #ϕ is the
code (e.g. the Gödel number) of any one out of the infinitely many programs
that compute ϕ, which as it happens is an uncomputable coding. The related
notion of an interpreter of one programming language in another, on the other
hand, would suggest that the interpreter has an effective way of understanding
the programs it is “interpreting”; in which case we would want distinct codes
for distinctly behaving programs. This way or that, our definition of univer-
sality captures the intended extensional containment: a function ψ is universal
for a set of programs if its specializations Ψ form a superset of the functions Φ
computed by the given set of programs.

3 Effectiveness over Arbitrary Domains

For domains other than strings or numbers, we also need to be able to speak of
effectiveness and effective universality. To that end, we need the characterization
of effectiveness from [4]. For one thing, we may presume that all elements of the
domain are reachable by means of given effective operations. Were that not the
case, then even constant functions would be deemed non-effective. Moreover, all
“basic” operations that are provided initially by a model of computation need
to be effective. To be sure of that, one may simply require that the domain
is generated by (finitely-many free) constructors and that initial operations are
programmable from nothing more than said constructors. For example, the
positive integers in binary are generated by the constant 1, and two unary
operations, _0 for × 2, and _1 for × 2 + 1. Thus, an effective model (like a
random-access machine) may incorporate basic arithmetic operations that are
programmable using these constructors.

We also assume that there is an effective test of equality for the domain.
Insisting that the domain be generated by (free) constructors, as opposed to
(finitely-many) arbitrary operations, which may provide more than one way
to refer to the same domain element, precludes the hiding of information in
equalities between the values of distinct terms.

Besides the requirement that the given basic operations be programmable,
effectiveness for general domains is just what one would expect. This generic
notion of effectiveness allows us to talk formally about effectiveness of operations
ρ : C⇀D from one domain to another, by requiring that everything can be built
out of constructors for the union C ∪D of the domains. That said and done, in
what follows, we need not dwell on programming details.
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The precise definition of effectiveness over arbitrary (countable) domains
given in [4] is based on the generic abstract-state machine formalism of Gure-
vich [5]. States can be any (isomorphism-closed) class of logical structures over
some fixed finite vocabulary. Furthermore, transitions must be effectively de-
scribable. This is formalized by saying that there is a fixed finite set of terms
that “determines behavior” of the algorithm in a sense made precise in [5, 6].
(Transitions must also preserve the domain of states and commute with isomor-
phism.) In [7, 4], it has been shown how the Church-Turing thesis, namely, that
no effective model can do more than a Turing machine can, follows provably
from the formalization of the earlier-mentioned characterization. Two other
natural characterizations of effectiveness, based on Turing machines [8] and re-
cursive functions (along the lines of [9] and others), are shown to be equivalent
to this one in [10].

A successor function s : C → C is a unary function that enumerates its
domain: C = {sn(e):n ∈ N} for some e ∈ C. For any finitely-generated domain,
there clearly are effective successor functions. Just effectively enumerate all
terms, (or just all constructor terms), thereby enumerating all domain values,
while skipping over duplicate values (if required). Therefore, by standard search
methods, any effective total injection f has an effective inverse f−1 such that
f−1(f(x)) = x for all x in the domain. (Even the inverse of a partial injection f
can be computed for its domain of definition by a breadth-first search, bounding
the number of steps the program for f(x) is allowed to run on any given potential
inverse x. This method may also employed to enumerate the domain when some
operations are partial.)

4 Domain Representations

To relate sets of functions (extensional models of computation) over two differ-
ent domains, C and D, we will employ a liberal notion of “simulation”, with
inputs mapped from C to D via an arbitrary (not explicitly effective) injective
representation ρ and outputs by the same, or another, representation σ. For
example, one typically represents a Platonic number n, as used by recursive
functions, as a string in unary (1n) or in binary. Conversely, a string can be
viewed as a number in a base the size of the alphabet. By the same token, graphs
and other data structures can be represented as strings. What we don’t really
want is for the representation to include non-trivial computational information,
like whether the graph has a Hamiltonian cycle.

Definition 1 (Simulation of Functions). For partial functions, g : C⇀C and

h : D⇀D, and (injective) representations ρ, σ : C 1-1−→D, we write h wσρ g and
say that h simulates g via ρ and σ, if g = σ−1◦h◦ρ, qua partial functions, that
is, if σ(g(x)) = h(ρ(x)) for all x in C, where equality is Kleene’s and σ is strict
(in the sense that σ of undefined is undefined).

Definition 2 (Simulation of Models). For sets of partial functions, G ⊆
[C⇀C] and H ⊆ [D⇀D], we write H wσρ G and say that H simulates G
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via ρ and σ if for all g ∈ G there exists h ∈ H such that h wσρ g. We say
that H simulates G, and write simply H w G, if H wσρ G for some choice of
representations ρ and σ.

When ρ and σ are the identity function, H wσρ G is the superset relation, H ⊇ G.
Simulation is transitive and reflexive.

When σ = ρ, it was shown in [11, proof of Thm. 4.7] that ρ is necessarily
effectively computable (over C ∪D) if there is an effective function ŝ ∈ H that
simulates a successor function s ∈ G. (The significance of successor was noted
in [12].) Even when σ 6= ρ, it turns out that both must be effectively computable,
provided that—in addition—the identity function is simulated effectively.

Proposition 3. If there are effective simulations over domain D of the suc-
cessor and identity functions of domain C, via representations ρ and σ, then ρ
and σ are effectively computable for C ∪D.

Proof. Let s be a successor function for C, starting from constant e ∈ C, and let
i be identity. It follows from the definitions that σ(i(y)) = ı̂(ρ(y)), σ(s(x)) =
ŝ(ρ(x)), and i(y) = y, for all x, y ∈ C, where the hats indicate the respective
simulating functions over D. Putting those together, we have ı̂−1(σ(i(s(x)))) =
i−1(i(ρ(s(x)))), from which it follows that ρ(s(x)) = ı̂−1(ŝ(ρ(x))).

As explained at the end of the previous section, the inverse ı̂−1 of the simu-

lation of the injection i : C 1-1−→D is computable for elements of the image σ(C)
of σ in D. Hence, ρ is effectively computable, since ρ(e) is just some constant,
while ρ(s(x)) can be computed by a composition of effective functions from ρ(x).

Furthermore, σ(x) = σ(i(x)) = ı̂(ρ(x)) is computable.

When functions take more than one argument, the representation function
ρ should be extended to tuples: ρ〈x1, . . . , x`〉 = 〈ρ(x1), . . . , ρ(x`)〉. Otherwise,
the earlier-mentioned definitions are unchanged.

5 Universality Across Domains

Using the notion of simulation, we arrive at the following generic definition of
a universal function:

Definition 4 (Universality). Let Φ be some set of unary functions (over a
domain C). A binary partial function ψ (over domain D) is universal for Φ if
Ψ (= {λy. ψ(a, y): a ∈ D}) simulates Φ.

In other words, ψ is universal for Φ if there is some injective input rep-

resentation ρ : C 1-1−→D, and an injective output representation σ : C 1-1−→D,
plus an arbitrary encoding # : Φ → D of the functions in Φ, such that
ψ(#ϕ, ρ(x)) = σ(ϕ(x)) for all ϕ ∈ Φ and x ∈ C. Note that if ψ is univer-
sal (Ψ w Φ) and ψ′ simulates ψ (hence, Ψ′ w Ψ), then ψ′ is also universal
(Ψ′ w Φ by transitivity). Cf. [13, Thm. 1].

Our main result is that an effectively computable universal function can only
simulate effective functions, as long as it simulates the constructors of a domain.
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Thus, the representation cannot in fact provide the universal function with any
information that might allow computation of the uncomputable.

Theorem 5. Let Φ be some set of unary functions over a domain C, including
successor and identity. Then, if there is an effective universal function (over
any domain D) for Φ, then all the simulated functions ϕ ∈ Φ are also effective.

Proof. Let ψ be the universal function. We have ϕ = σ−1◦ψ#ϕ◦ρ, for any ϕ ∈ Φ.
By Proposition 3, ρ and σ are effective, since the simulations (ŝ = ψ#s, ı̂ = ψ#i ,
etc.) of the successor and identity (s, i , and the like) are effective. So ϕ is an
effective composition of effective functions.

In other words, the universal function cannot underhandedly simulate harder
functions than it itself is capable of computing.

Nevertheless, just because ρ is effective does not mean that it cannot hide
some information, albeit computable, in the representation, simply by mapping
x ∈ C to a “tuple” [x, f(x), g(x), . . . ] in D, for finitely many computable func-
tions f , g, etc., such as Hamiltonianism. (The square brackets here stand for
any standard tupling operation that effectively converts a sequence into a single
element.) But if there is an effective injective ρ and universal function ψ, it can
be shown that there is also an effective bijective ρ′ and universal function ψ′,
with the latter doing all the hard work. So, restricting the notion of simulation
to bijective representations, though that is not the way things are usually done,
could make sense.

6 Data Pairing

One potential problem with the earlier-mentioned definition of universal func-
tion is that some models of computation—like Turing machines—do not take
their inputs separately, but, rather, all functions are unary (string-to-string for
Turing machines). In such cases, one needs to be able to represent pairs (and
tuples) as single elements. One standard pairing function for the naturals (used
be Gödel) is the injection 〈i, j〉 := 2i3j . Another, among many, is the (Can-
tor) bijection 〈i, j〉 := 1

2 (i+ j)(i+ j + 1) + j, or this one (used by Kalmár and
others): 〈i, j〉 := 2i(2j + 1) − 1. For strings, one usually uses an injection like
〈u,w〉 := u;w, where “;” is some symbol not in the original string alphabet.

There are several ways to proceed. The pairing function could reside in
the source domain C, or in the target domain D, or in the representation of
C as D. Regardless, this need raises a critical issue. Unless we demand that
pairing be effective, there could be a machine that does too much, computing
even non-effective functions. For example, a näıve definition might simply ask
that pairing be injective and that ϕ(x) = ψ〈#ϕ, x〉 for all ϕ ∈ Φ and x ∈ D
(omitting parentheses around the pair). The problem is that an injective pairing
could cheat and include the answer in the “pair”. In contrast with encodings,
which can only provide a finite amount of information regarding a function ϕ,
a dishonest pairing 〈#ϕ, x〉 may add an infinite quantity, by providing different
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data for each argument x of ϕ. For Turing machines, say, the pair 〈u,w〉 might
be represented as u;w when machine u halts on input w and as u:w (with
a colon instead of a semicolon) when it doesn’t. Better yet, one could map
〈#ϕ, y〉 7→ [ϕ(y),#ϕ, y], where the square brackets are some ordinary tupling
function for the domain. Then a putative universal machine could effortlessly
”compute” virtually anything, computable or otherwise, just by reading the
encoded input.

So, we clearly need for pairing to be effectively computable, as Davis and
Rogers also insist. But we are talking about models in which no function takes
two arguments, so we might not have an appropriate notion of computable
binary function at our disposal. To capture effectiveness of pairing in such
circumstances, we demand the existence of component-wise successor functions.

Let 〈·, ·〉 : D × D 1-1−→D be a pairing function for D. The component-wise
successor functions operate as follows: s1 : 〈a, b〉 7→ 〈s(a), b〉 and s2 : 〈a, b〉 7→
〈a, s(b)〉. If s, s1 and s2 are effective, then we will say that pairing is effective.
This is because one can program pairing so that 〈z, y〉 := si1(sj2〈e, e〉), where
z = si(e) and y = sj(e). And if pairing is effective, then its two projections
(inverses), π1 : 〈a, b〉 7→ a and π2 : 〈a, b〉 7→ b, are likewise effective. (Generate
all representations of pairs in a zig-zag fashion, until the desired one is located.
What the projections do with non-pairs is left up in the air.)

Another concern is that requiring that pairing be computable is too liberal
for the purpose. One does not really want the pairing function to do all the hard
real work itself. For example, the mapping could include ϕ(x) in the pair, at
least for ϕ that are known to be total (like, for the primitive recursive functions,
of which there are infinitely many). That would make it a trivial matter to be
universal for those functions—just transcribe the answer from the input.

If, in addition to being effective, pairing is bijective, then we will deem it
honest, since then there is no room for hiding information. For such a pairing
with effective projections, there is an effective means of forming a pair 〈a, b〉
(by enumerating all of D until the two projections give a and b, respectively).
Note that, with bijectiveness alone, without effectivity, one could still hide a
fair amount of uncomputable information in a bijective mapping. For instance,
imagine that 0 is the code of the totality predicate and that the rest of the
naturals code the partial-recursive functions in a standard order. Map pairs
(i+1, z) to 3〈i, z〉, where 〈·, ·〉 is a standard bijective pairing; map (0, z) to 3j+1
when z is the (code of the) jth total (recursive) function; and map (0, z) to 3k+2
when z is the kth non-total (partial recursive) function. Now, let U be some
standard effective universal function. Then, for y divisible by 3, ψ(y) := U(y/3)
would cover all the partial-recursive functions, whereas ψ(y) := y ≡ 1 (mod 3)
would yeild the uncomputable totality predicate, when representing (0, z) by y,
which is not divisible by 3.

In the presence of a (not necessarily honest) pairing function, we say that ψ
is universal if Ψ w Φ, where, this time, ψa = λy. ψ〈a, y〉.

Definition 6 (Unary Universality). Let Φ be some set of unary functions (over
a domain C). A unary function ψ (over domain D) is universal for Φ, via
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injective pairing function 〈·, ·〉 (over D), if Ψ (= {λy. ψ〈a, y〉: a ∈ D}) simulates
Φ. If, in addition, pairing is bijective, then we call the universal function honest.

That is, ψ is universal if ψ〈#ϕ, ρ(x)〉 = σ(ϕ(x)) for ϕ ∈ Φ and x ∈ C. Of course,
we are interested in the case where both pairing and the universal function are
effective.

Theorem 7. Let Φ be some set of unary functions over a domain C, including
successor and identity. Then, if there is an effective unary universal function
(over any domain D) for Φ, via an effective injective pairing, then all the sim-
ulated functions ϕ ∈ Φ are also effective.

Proof. Apply Theorem 5 to ψ′(z, y) := ψ〈z, y〉.

Suppose Φ = {ϕz}z is some standard enumeration of (the definitions of)
the partial-recursive functions. Based on Davis’s second definition of a uni-
versal Turing machine (which relies on a notion of effective mappings be-
tween strings and numbers, namely, recursive in Gödel numberings), Rogers
defines the property “universal(III)” of a unary numerical function ψ to be that
ϕz(x) = γ(ψ〈z, x〉) for some effective (recursive) bijection γ and effective (but
perhaps dishonest) pairing 〈·, ·〉. Let’s say that such a ψ is Rogers-universal.

We may conclude the following from the definitions:

Theorem 8. If a function is Rogers-universal, then it is universal in the sense
of Definition 6. Furthermore, there is an honest effective universal function.

Proof. Let ψ be the given Rogers-universal function. Take the standard enu-
meration for the encoding #, identity for the input representation ρ, and γ−1

(which is well-defined and effective) for the output representation σ. Then,
ψ〈#ϕz, ρ(x)〉 = ψ〈z, x〉 = σ(ϕz(x)), as required.

For the second part, take some bijective pairing 〈〈·, ·〉〉 with effective pro-
jections π1 and π2, and let ψ′ := λr. ψ〈π1(r), π2(r)〉 be our honest universal
function. Putting those together, we get ψ′〈〈z, x〉〉 = ψ〈z, x〉 = σ(ϕz(x)).

7 Discussion

We have generalized the classical notion of universality to apply to arbitrary
models over arbitrary domains. Indeed, for every effective model in the sense
of [10], there is a universal program ψ over its own domain, which can be ex-
pressed as an effective abstract state machine. Moreover, any such ψ is universal
for every effective model over any other effective domain, via a bijective rep-
resentation between domains. (A bijection can be induced from the successor
functions of the two domains.) We have seen that these universal functions
cannot simulate more than can actually be done effectively within the model of
computation itself.

Some directions for further thought are the following:
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1. Extend the notion of universal evaluation to partial evaluations as in
Kleene’s smn Theorem [14] and the Futamura projections [15].

2. Consider steppers and interpreters, which take programs and simulate
their step-by-step behavior, in a controlled fashion. Abstract state ma-
chines provide a means for capturing the step-by-step behavior of arbitrary
classical algorithms.

3. Clarify the relation between a universal abstract state machine and non-
effective universal functions. See [16, Sect. 6].

4. Consider a Turing machine simulation in which initial tapes may have
infinite effective content, rather than being all blank at the ends, an issue
that has been raised in the recent Wolfram competition [17].
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