
Axiomatizing Analog Algorithms

Olivier Bournez1?, Nachum Dershowitz2??, and Pierre Néron3

1 Laboratoire d’Informatique de l’X (LIX), École Polytechnique, France
2 School of Computer Science, Tel Aviv University, Ramat Aviv, Israel
3 French Network and Information Security Agency (ANSSI), France

bournez@lix.polytechnique.fr nachum@cs.tau.ac.il pierre.neron@ssi.gouv.fr

Abstract. We propose a formalization of generic algorithms that in-
cludes analog algorithms. This is achieved by reformulating and extending
the framework of abstract state machines to include continuous-time mod-
els of computation. We prove that every hybrid algorithm satisfying some
reasonable postulates may be expressed precisely by a program in a simple
and expressive language.

1 Introduction

In [14], Gurevich showed that any algorithm that satisfies three intuitive “Se-
quential Postulates” can be step-by-step emulated by an abstract state machine
(ASM). These postulates formalize the following intuitions: (I) one is dealing
with discrete deterministic state-transition systems; (II) the information in states
suffices to determine future transitions and may be captured by logical structures
that respect isomorphisms; and (III) transitions are governed by the values of a
finite and input-independent set of ground terms. All notions of algorithms for
“classical” discrete-time models of computation in computer science are covered by
this formalization. This includes Turing machines, random-access memory (RAM)
machines, and their sundry extensions. The geometric constructions in [18], for
example, are loop-free examples of discrete-step continuous-space (real-number)
algorithms. The ASM formalization also covers general discrete-time models
evolving over continuous space like the Blum-Shub-Smale machine model [1].

However, capturing continuous-time models of computation is still a challenge,
that is to say, capturing models of computation that operate in continuous (real)
time and with real values. Examples of continuous-time models of computations
include models of analog machines like the General Purpose Analog Computer
(GPAC) of Claude Shannon [20], proposed as a mathematical model of the
Differential Analyzers, built for the first time in 1931 [7], and used to solve
various problems ranging from ballistics to aircraft design – before the era of

? This author’s research was partially supported by a French National Research
Agency’s grant (ANR-15-CE40-0016-02).

?? This author’s research benefited from a fellowship at the Institut d’Études Avancées
de Paris (France), with the financial support of the French National Research Agency’s
“Investissements d’avenir” program (ANR-11-LABX-0027-01 Labex RFIEA+).



the digital computer [16]. Others include Pascal’s 1642 Pascaline, Hermann’s
1814 Planimeter, as well as Bill Phillips’ 1949 water-run Financephalograph.
Continuous-time computational models also include neural networks and systems
built using electronic analog devices. Such systems begin in some initial state
and evolve over time; results are read off from the evolving state and/or from
a terminal state. More generally, determining which systems can actually be
considered to be computational models is an intriguing question and relates
to philosophical discussions about what constitutes a programmable machine.
Continuous-time computation theory is far less understood than its discrete-time
counterpart [4]. Another line of development of continuous-time models was
motivated by hybrid systems, particularly by questions related to the hardness of
their verification and control. In hybrid systems, the dynamics change in response
to changing conditions, so there are discrete transitions as well as continuous ones.
Here, models are not seen as necessarily modeling analog machines, but, rather,
as abstractions of systems about which one would like to establish properties
or derive verification algorithms [4]. Some work on ASM models dealing with
continuous-time systems has been accomplished for specific cases [8,9]. Rust [19]
specifies forms of continuous-time evolution based on ASMs using infinitesimals.
However, we find that a comprehensive framework capturing general analog
systems is still wanting.

Our goal is to capture all such analog and hybrid models within one uniform
notion of computation and of algorithm. To this end, we formalize a generic notion
of continuous-time algorithm. The proposed framework is an extension of [14], as
discrete-time algorithms are a simple special case of analog algorithms. (The initial
attempt [5] was not fully satisfactory, as no completeness theorem nor general-
form result was obtained. Here, we indeed achieve both.) We provide postulates
defining continuous-time algorithms, in the spirit of those of [14], and we prove
some completeness results. We define a simple notion of an analog ASM program
and prove that all models satisfying the postulates have corresponding analog
programs (Lemma 16 and Theorem 20). Furthermore, we provide conditions
guaranteeing that said program is unique up to equivalence (Theorem 21 and
Corollary 22). All of this seamlessly extends the results of [14] to analog and
hybrid systems. The proposed framework covers all classes of continuous-time
systems that can be modeled by ordinary differential equations or have hybrid
dynamics, including the models in [4] and the examples in [5]. It is a first step
towards a general understanding of computability theory for continuous-time
models, taken in the hope that it will also lead to a formalization of a “Church-
Turing thesis” for analog systems in the spirit of what has been achieved for
discrete-time models [2,10,3]. Systems with continuous input signals and other
means of specifying continuous behavior are left for future work.

Some of our ideas were inspired by the way the semantics of hybrid systems
are given in the approach of Platzer [17]. Among attempts at studying the
semantics of analog systems within a general framework is [22]. Recent results
on comparing analog models include [11]. Soundness and (relative) completeness



results for a programming language with infinitesimals have also been obtained
in [21]. Applications to verification have been explored [15].

2 General Algorithms

We want to generalize the notion of algorithms introduced by Gurevich in [14] in
order to capture not only the sequential case but also continuous behavior. (For
lack of place, we assume some familiarity with [14].) However, when evolving
continuously, an algorithm can no longer be viewed as a discrete sequence of
states, and we need a notion of evolution that can capture both kinds of behavior.
This is based on a notion of a timeline that corresponds to algorithm execution.

Definition 1 (Time). Time T corresponds to a totally ordered monoid: there
is an associative binary operation +, with some neutral element 0, and a total
relation ≤ preserved by +: t ≤ t′ implies t+ t′′ ≤ t′ + t′′ for all t′′ ∈ T.

An element of T will be called a moment. Examples of time T are R≥0 and N.
As expected, t < t′ will mean t ≤ t′ but not t = t′.

Definition 2 (Timeline). A timeline is a subset of T containing 0. We let I
denote the set of all timelines.

For a moment i ∈ I of timeline I, we write Jump(i) if there exists t ∈ I with
i < t, and there is no t′ ∈ I with i < t′ < t. We write Flow(i) otherwise: that
means that for all t, i < t, there is some in-between t′ ∈ I with i < t′ < t. A
moment i with Jump(i) is meant to indicate a discrete transition. In this case,
we write i+ for the smallest t greater than i. A timeline I is non-Zeno if for any
moment i ∈ I, there is a finite number of moments j ≤ i with Jump(j). I is
non-Zeno if all its timelines are.

For timelines I = R≥0, for instance, we have Flow(i) for all i ∈ I. For I = N,
we have Jump(i) for all i ∈ I, and i+ = i + 1. We intend (for hybrid systems,
in particular) to also consider timelines mixing both properties, that is, with
Flow(i) for some i and Jump(i) for other i. Formally building such timelines is
easy (for example

⋃
n∈N[n, n+ 0.5]). All these examples are non-Zeno.

Definition 3 (Truncation). Given a timeline I ∈ I and a moment i of I, the
truncated timeline I[i] is the timeline defined by I[i] = {t | i+ t ∈ I}.

With timelines in hand, we can define hybrid dynamical systems.

Definition 4 (Dynamical System). A dynamical system 〈S,S0, ι, ϕ〉 consists
of the following: (a) a nonempty set (or class) S of states; (b) a nonempty subset
(or subclass) S0 ⊆ S, called initial states; (c) a timeline map ι : S → I, with I
non-Zeno; (d) a trajectory map ϕ : (X : S) × ι(X) → S. We require that, for
any state X and moments i, i+ i′ ∈ ι(X), one has

ϕ(X, 0) = X , ι(ϕ(X, i)) = ι(X)[i] , ϕ(X, i+ i′) = ϕ(ϕ(X, i), i′) .



Together, the timeline and trajectory maps associate to each state its future
evolution. For a state X, ι(X) defines the timeline corresponding to the system
behavior starting from X, and ϕ(X) defines its concrete evolution by associating
to each moment in ι(X) its corresponding state. The third condition ensures
that evolution during i+ i′ is similar to first evolving during i and then during
i′; the preceding condition ensures a similar property for timelines (and ensures
consistency of the last condition).

Postulate I. An algorithm is a dynamical system.

A vocabulary V is a finite collection of fixed-arity (possibly nullary) function
symbols, some functions of which may be tagged relational. A term whose
outermost function symbol is relational is termed Boolean. We assume that
V contains the scalar (nullary) function true. A (first-order) structure X of
vocabulary V is a nonempty set S, the base set (domain) of X, together with
interpretations of the function symbols in V over S: A j-ary function symbol f
is interpreted as a function, denoted JfKX , from Sj to S. Elements of S are also
called elements of X, or values. Similarly, the interpretation of a term f(t1, . . . , tn)
in X is recursively defined by Jf(t1, . . . , tn)KX = JfKX (Jt1KX , . . . , JtnKX).

Let X and Y be structures of the same vocabulary V. An isomorphism from
X onto Y is a one-to-one function ζ from the base set of X onto the base set of
Y such that f(ζx1, . . . , ζxj) = ζx0 in Y whenever f(x1, . . . , xj) = x0 in X.

Definition 5 (Abstract Transition System). An abstract transition system
is a dynamical system whose states S are (first-order) structures over some finite
vocabulary V, such that the following hold:

(a) States are closed under isomorphism, so if X ∈ S is a state of the system,
then any structure Y isomorphic to X is also a state in S, and Y is an initial
state if X is.

(b) Transformations preserve the base set: that is, for every state X ∈ S, for any
i ∈ ι(X), ϕ(X, i) has the same base set as X.

(c) Transformations respect isomorphisms: if X ∼=ζ Y is an isomorphism of
states X,Y ∈ S, then ι(X) = ι(Y ) and for all i ∈ ι(X), Xi

∼=ζ Yi, where
Xi = ϕ(X, i), and Yi = ϕ(Y, i).

Postulate II. An algorithm is an abstract transition system.

When ι(X) is N (or order-isomorphic to N) for all X, this corresponds precisely
to the concepts introduced by [14], considering that ϕ(X,n) = τ [n](X).

It is convenient to think of a structure X as a memory of some kind: If
f is a j-ary function symbol in vocabulary V, and a is a j-tuple of elements
of the base set of X, then the pair (f, a) is called a location. We denote by
Jf(a)KX its interpretation in X, i.e. JfKX (a). If (f, a) is a location of X and
b is an element of X then (f, a, b) is an update of X. When Y and X are
structures over the same domain and vocabulary, Y \ X denotes the set of
updates ∆+ = {(f, a, Jf(a)KY ) | Jf(a)KY 6= Jf(a)KX}.

We want instantaneous evolution to be describable by updates:



Definition 6. An infinitesimal generator is (a) a function ∆ that maps states
X to a set ∆(X) of updates, and (b) preserves isomorphisms: if X ∼=ζ Y is an
isomorphism of states X,Y ∈ S, then for all updates (f, a, b) ∈ ∆(X), we have
an isomorphic update (f, ζa, ζb) ∈ ∆(Y ).

We write Jump(X) and say that X is a jump when Jump(0) in timeline
ι(X); otherwise, we write Flow(X) and say that it is a flow. For states X with
Jump(X), the following is natural:

Definition 7. The update generator is the infinitesimal generator defined on
jump states X as ∆(X) = ∆+(X), where ∆+(X) stands for ϕ(X, 0+) \X.

To deal with flow states, we will also define some corresponding infinitesimal
generator ∆ψ. Before doing so, let’s see how to go from semantics to generators.

An initial evolution over S is a function whose domain of definition is a
timeline and whose range is S. An initial evolution is said to be initially constant
if it has a constant prefix: that is to say, there is some 0 < t such that the function
is constant over [0 .. t].

Definition 8 (Semantics). A semantics ψ over a class C of sets S is a partial
function mapping initial evolutions over some S ∈ C to an element of S.

Remark 9. When T = R≥0, an example of semantics over the class of sets S
containing R is the derivative ψder, mapping a function f to its derivative at 0
when that exists. When T = N, an example of semantics over the class of all sets
would be the function ψN mapping f to f(1). More generally, when 0 ∈ T is such
that Jump(0), an example of semantics over the class of all sets is the function
ψN mapping f to f(0+).

Consider a semantics ψ over a class of sets S. Let X be a state whose
domain is in the class and a location (f, a) of X. Denote by Evolution(X, (f, a))
the corresponding initial evolution: that is to say, the function given formally
by Evolution(X, (f, a)) : t 7→ Jf(a)Kϕ(X,t) for 0 ≤ t ≤ I1, t ∈ ι(X), for some

I1 ∈ ι(X), with I1 = 0+ for a jump. We use ψ[X, f, a] to denote the image of
this evolution under ψ (when it exists).

Definition 10 (Infinitesimal generator associated with ψ). The in-
finitesimal generator associated with ψ, maps each state X, such that
ψ[X, f, a] is defined for all locations, to the set: ∆ψ(X) = {(f, a, ψ[X, f, a]) |
(f, a) is a location of X, Evolution(X, (f, a)) is not initially constant}.

The update generator ∆+ (see Definition 7) is the infinitesimal generator
associated with the semantics ψN (of Remark 9) over flow states.

From now on, we assume that some semantics ψ is fixed to deal with flow
states. It could be ψder, but it could also be another one (for example: talking
about integrals or built using infinitesimals as in [19]). We denote by ∆ψ the
associated infinitesimal generator.



We are actually discussing algorithms relative to some ψ, and to be more
precise, we should be refering to ψ-algorithms. The point is that not every
infinitesimal generator is appropriate and that appropriateness is actually relative
to a time domain and to the class of allowed dynamics over this time domain.
To see this, keep in mind that – when ∆ψ corresponds to derivative – to be
able to talk about derivatives, one implicitly restricts oneself to dynamics that
are differentiable, hence non-arbitrary. In other words, one is restricting to a
particular class of possible dynamics, and not all dynamics are allowed. Restricting
to other classes of dynamics (for example, analytic ones) may lead to different
notions of algorithm.

From the update generator ∆+ and ∆ψ, we build a generator also tagging
states by the fact that they correspond to a jump or a flow:

Definition 11 (Generator of a State). We define the tagged generator of a
state X, denoted ∆t(X), as a function that maps state X to {F}×∆ψ(X) when
Flow(X) and ∆ψ(X) is defined and to {J } ×∆+(X) when Jump(X).

Let T be a set of ground terms. We say that states X and Y coincide over
T , if JsKX = JsKY for all s ∈ T . This will be abbreviated X =T Y . The fact that
X and Y coincide over T implies that X and Y necessarily share some common
elements in their respective base sets, at least all the JsKX for s ∈ T .

An algorithm should have a finite imperative description. Intuitively, the
evolution of an algorithm from a given state is only determined by inspecting
part of this state by means of the terms appearing in the algorithm description.
The following corresponds to the Bounded Exploration postulate in [14].

Postulate III. For any algorithm, there exists a finite set T of ground terms
over vocabulary V such that for all states X and Y that coincide for T , ∆t(X)
and ∆t(Y ) both exist and ∆t(X) = ∆t(Y ).

A ground term of T is a critical term and a critical element is the value
(interpretation) of a critical term.

Definition 12 (Analog Algorithm). An algorithm is an object satisfying
Postulates I through III.

3 Characterization Theorem

We now go on to define the rules of our programs (adding to those of ASM
programs in [14]).

Definition 13. – Update Rule: An update rule of vocabulary V has the form
f(t1, . . . , tj) := t0 where f is a j-ary function symbol in V and t1, . . . , tj are
ground terms over V.

– Parallel Update Rule: If R1, . . . , Rk are update rules of vocabulary V,
then par R1 R2 . . . Rk endpar is a parallel update rule of
vocabulary V.



∆t(Ri, X) denotes the interpretation of a rule R in state X and is de-
fined as expected: If R is an update rule f(t1, . . . , tj) := t0 then ∆t(R,X) =
{J } × (f, (JtiKX , . . . , JtjKX), Jt0KX) and when R is par R1, . . . , Rk endpar then
∆t(R,X) = {J } × (d1 ∪ · · · ∪ dk) where ∆t(Ri, X) = {J } × di for all i.

Next, we introduce rules to deal with Flows.

Definition 14. – Basic Continuous Rule: A basic continuous rule of vo-
cabulary V has the form Dynamic(f(t1, . . . , tj), t0) where f is a symbol of
arity j and t0, t1, . . . , tj are ground terms of vocabulary V.

– Flow Rule: If R1, . . . , Rk are basic continuous rules of vocabulary V, then
flow R1 R2 . . . Rk endflow is a flow rule of vocabulary V.

Their semantics are then defined as follows. If R is a basic continuous rule
Dynamic(f(t1, . . . , tj), t0) then ∆t(R,X) = {F} × {(f, (a1, . . . , aj), a0)} where
each ai = JtiKX . If R is a flow rule with constituents R1, . . . , Rk, then ∆t(R,X) =
{F} × (d1 ∪ · · · ∪ dk) where ∆t(Ri, X) = {F} × di.

Finally, we allow conditionals:

Definition 15. – Selection Rule: If ϕ is a ground boolean term over vocabu-
lary V and R1 and R2 are rules of vocabulary V then: if ϕ then R1 else

R2 endif is a rule of vocabulary V.

Given such a rule R and a state X, if ϕ evaluates to true (the interpretation
of scalar function true) in X then ∆t(R,X) = ∆t(R1, X) else ∆t(R,X) =
∆t(R2, X).

An ASM program of vocabulary V is a rule of vocabulary V. The first key
result is the following, which can be seen as a completeness result.

Theorem 16 (Completeness). For every algorithm of vocabulary V, there is
an ASM program Π over V with the identical behavior: ∆t(Π,X) = ∆t(X) for
all states X.

4 Extended Statements

We are now very close to formulating our other theorems. First we define an
abstract state machine relative to semantics ψ.

Definition 17. A ψ-abstract state machine B comprises the following: (a) an
ASM program Π; (b) a set S of (first-order) structures over some finite vocabulary
V closed under isomorphisms, and a subset S0 ⊆ S closed under isomorphisms;
(c) a map ι and a map ϕ such that 〈S,S0, ι, ϕ〉 is an algorithm, where ∆ψ is
fixed to be the infinitesimal generator associated with ψ, and for all states X in
S, ∆t(Π,X) = ∆t(X).

By definition, a ψ-abstract state machine B satisfies all the postulates and
hence is an algorithm.



Definition 18. An ASM program Π is ψ-solvable for a set S of (first-order)
structures over some finite vocabulary V closed under isomorphisms and a subset
S0 ⊆ S closed under isomorphisms if there exists a unique ι and ϕ such that
(Π,S,S0, ι, ϕ) is a ψ-abstract state machine.

Definition 19. A semantics ψ is unambiguous if for all sets S of (first-order)
structures over some finite vocabulary V closed under isomorphisms, and for all
subsets S0 ⊆ S closed under isomorphisms, whenever there exists some ι and ϕ
such that (Π,S,S0, ι, ϕ) is a ψ-abstract state machine, then ι and ϕ are unique.

Our main results follow. (Proofs are relegated to the technical report [6].)

Theorem 20. For every ψ-definable algorithm A, there exists an equivalent
ψ-abstract state machine B.

Theorem 21. Assume that ψ is unambiguous. For every ψ-definable algorithm
A, there exists a unique equivalent ψ-abstract state machine B with same states
and initial states.

Corollary 22. Assume that ψ is unambiguous. For every ψ-definable algorithm
A, there exists an equivalent ψ-solvable ASM program.

To any algorithm A that is ψ-definable there corresponds an equivalent ψ-
abstract state machine B, and hence a ψ-solvable program Π. Conversely, a
ψ-abstract state machine B corresponds to a ψ-definable algorithm. However,
not every program Π is ψ-solvable.

When ψ-corresponds to ψder, unambiguity comes from (unicity in) the Cauchy-
Lipschitz theorem. The fact that not every program Π is ψ-solvable is due to
the fact that not all differential equations have a solution.

5 Examples

The examples in this section are for semantics ψder. Our settings cover, first of
all, analog algorithms that are pure flow, in particular all systems that can be
modeled as ordinary differential equations. A very simple, classical example is
the pendulum: the motion of an idealized simple pendulum is governed by the
second-order differential equation θ′′ + g

Lθ = 0 , where θ is angular displacement,
g is gravitational acceleration, and L is the length of the pendulum rod. This
can indeed be modeled as the program

flow Dynamic(θ, θ1) Dynamic(θ1,− g
L · θ) endflow

using the fact that any ordinary differential equation can be put in the form of a
vectorial first-order equation, here θ1 corresponding to the derivative of θ.

As a consequence, our formalism covers very generic classes of continuous-
time models of computation, including the GPAC, which corresponds to ordinary
differential equations with polynomial right-hand sides [13,12]. Recall that the
GPAC was proposed as a mathematical model of differential analyzers (DAs),
one of the most famous analog computer machines in history. Figure 1 (left)



∫ ∫ ∫-1

q q
t

z

y

x


x′ = z x(0) = 1
y′ = x y(0) = 0
z′ = −y′ z(0) = 0 .

Fig. 1. A GPAC for sine and cosine (left). Corresponding evolution (right).

depicts a (non-minimal) GPAC that generates sine and cosine. In this picture,∫
signifies some integrator, and −1 denotes some constant block. This simple

GPAC can be modeled by the program
flow Dynamic(x, z) Dynamic(y, x) Dynamic(z,−x) endflow

Our proposed model can also adequately describe hybrid systems, made
of alternating sequences of continuous evolution and discrete transitions. This
includes, for example, a simple model of a bouncing ball, the physics of which
are given by the flow equations x′′ = −gm, where g is the gravitational constant
and v = x′ is the velocity, except that upon impact, each time x = 0, the velocity
changes according to v′ = −k · v′, where k is the coefficient of impact. Every
time the ball bounces, its speed is reduced by a factor k. This system can be
described by a program like

if x = 0 then v := −k · v
else flow Dynamic(x, v) Dynamic(v,−g.m) endflow endif

Our setting is an extension of classical discrete-time algorithms; hence, all
classical discrete-time algorithms can also be modeled.

As for examples with semantics other than ψder: Observe that one can consider
timelines like Q instead of R. (For such a timeline, we have Flow(i) for all i ∈ Q.)
One can define a semantics on such a timeline where for every state X we have
Flow(X) by first extending the evolution function to R (for example by restricting
to continuous dynamics) and then using the derivative. Constructions of [19]
are also covered by our settings: In some sense, the example at the beginning of
the paragraph is the spirit of the constructions from [19], where the timeline is
the set of hyperreals obtained by multiplying some fixed infinitesimal by some
hyperinteger (using hyperreals and infinitesimals). Notice that there is no need to
consider derivatives or similar notions: we could also consider analytic dynamics,
and consider a semantics related to the family of Taylor coefficients. Weaker
notions of solution, like variational approaches, can also be considered.

References

1. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over
the real numbers; NP completeness, recursive functions and universal machines.
Bulletin of the American Mathematical Society 21 (1989) 1–46

2. Boker, U., Dershowitz, N.: The Church-Turing thesis over arbitrary domains. In:
Pillars of Computer Science. Lecture Notes in Computer Science, Vol. 4800. Springer
(2008) 199–229



3. Boker, U., Dershowitz, N.: Three paths to effectiveness. In: Fields of Logic and
Computation. Springer (2010) 135–146

4. Bournez, O., Campagnolo, M.L.: A survey on continuous time computations. In:
New Computational Paradigms. Changing Conceptions of What is Computable.
Springer (2008) 383–423

5. Bournez, O., Dershowitz, N., Falkovich, E.: Towards an axiomatization of simple
analog algorithms. In: Proc. 9th Annual Conference on Theory and Applications of
Models of Computation. Springer (2012) 525–536

6. Bournez, O., Dershowitz, N., Néron, P.: Axiomatizing Analog Algorithms. ArXiv
e-prints 1604.04295, http://arxiv.org/abs/1604.04295 (2016)

7. Bush, V.: The differential analyser. Journal of the Franklin Institute 212 (1931)
447–488

8. Cohen, J., Slissenko, A.: On implementations of instantaneous actions real-time
ASM by ASM with delays. In: Proc. 12th Intl. Workshop on Abstract State
Machines. Université de Paris 12 (2005) 387–396

9. Cohen, J., Slissenko, A.: Implementation of sturdy real-time abstract state machines
by machines with delays. In: Proc. 6th Intl. Conf. on Computer Science and
Information Technology. National Academy of Science of Armenia (2007)

10. Dershowitz, N., Gurevich, Y.: A natural axiomatization of computability and proof
of Church’s Thesis. The Bulletin of Symbolic Logic 14 (2008) 299–350

11. Fu, M.Q., Zucker, J.: Models of computation for partial functions on the reals. J.
Logical and Algebraic Methods in Programming 84 (2015) 218–237

12. Graça, D.S., Buescu, J., Campagnolo, M.L.: Computational bounds on polynomial
differential equations. Appl. Math. Comput. 215 (2009) 1375–1385

13. Graça, D.S., Costa, J.F.: Analog computers and recursive functions over the reals.
Journal of Complexity 19 (2003) 644–664

14. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Log. 1 (2000) 77–111

15. Hasuo, I., Suenaga, K.: Exercises in nonstandard static analysis of hybrid systems.
In: Computer Aided Verification. Springer (2012) 462–478

16. Nyce, J.M.: Guest editor’s introduction. IEEE Ann. Hist. Comput. 18 (1996) 3–4
17. Platzer, A.: Differential dynamic logic for hybrid systems. J. Automated Reasoning

41 (2008) 143–189
18. Reisig, W.: On Gurevich’s theorem on sequential algorithms. Acta Informatica 39

(2003) 273–305
19. Rust, H.: Hybrid abstract state machines: Using the hyperreals for describing

continuous changes in a discrete notation. In: Intl. Workshop on Abstract State
Machines. Swiss Federal Institute of Technology (2000) 341–356

20. Shannon, C.E.: Mathematical theory of the differential analyser. Journal of
Mathematics and Physics 20 (1941) 337–354

21. Suenaga, K., Hasuo, I.: Programming with infinitesimals: A while-language for
hybrid system modeling. In: Automata, Languages and Programming. Springer
(2011) 392–403

22. Tucker, J.V., Zucker, J.I.: A network model of analogue computation over metric
algebras. In: New Computational Paradigms. Springer (2005) 515–529

http://arxiv.org/abs/1604.04295

	Axiomatizing Analog Algorithms

